Abstract

Stridulation in many gomphocerine grasshoppers is characterized by specific phase shifts between the two hindlegs as well as different movement patterns produced by the left and the right leg. The underlying neuronal excitation patterns are generated by networks on either side of the metathoracic ganglion. The role of the intraganglionic commissures in right-left coordination and the production of differing movement patterns was investigated by transecting the metathoracic ganglion mediosagittally in Omocestus viridulus, Chorthippus biguttulus and Chorthippus mollis. In all three species, after this operation both hindlegs produced the same pattern and no longer different movements. The effects of transection on coordination differed: rapid movement rhythms, like those typical of Ch. biguttulus and the vibratory parts of the song of Ch. mollis, on the two sides drifted with respect to one another. In contrast, the slow rhythms characteristic of O. viridulus and the song subunits of Ch. mollis were completely synchronized. It is inferred that in intact animals the pathways for coordination of the rapid stridulatory rhythms are exclusively intraganglionic, whereas the phase relations of the slow rhythms are additionally influenced by way of anterior right-left connections, perhaps within the suboesophageal ganglion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call