Abstract

BackgroundTemplate switching between two distinct HIV-1 RNA genomes during reverse transcription gives rise to recombinant viruses that greatly expand the genetic diversity of HIV-1 and have adverse implications for drug resistance, immune escape, and vaccine design. Virions with two distinct genomes are produced exclusively from cells infected with two or more viruses, or ‘doubly infected’ cells. Previous studies have revealed higher than expected frequencies of doubly infected cells compared to frequencies based on chance alone, suggesting non-random enhancement of double infection.MethodsWe investigated double infection of unstimulated primary CD4+ T cells using reporter viruses carrying genes for different fluorescent proteins, EGFP and mCherry, combined with sophisticated modeling techniques based on Poisson distribution. Additionally, through the use of multiparameter flow cytometry we examined the susceptibility of naïve and memory subsets of CD4+ T cells to double infection by HIV.ResultsUsing our double infection system, we confirm non-random enhancement of multiple infection events. Double infection of CD4+ T cells was not found to be a consequence of suboptimal provirus expression rescued by Tat in trans—as has been reported in cell lines—but rather due to a heterogeneous cell population in which only a fraction of primary peripheral blood CD4+ T cells are susceptible to HIV infection regardless of viral titer. Intriguingly, double infection of CD4+ T cells occurred preferentially in memory CD4+ T cells—particularly the central memory (TCM) subset—but was not a consequence of SAMHD1-mediated restriction of HIV infection in naïve cells.ConclusionsThese findings reveal that double infection in primary CD4+ T cells is primarily a consequences of cellular heterogeneity and not rescue of suboptimal provirus expression by Tat in trans. Additionally, we report a previously unappreciated phenomenon of enhanced double infection within primary TCM cells and suggest that these long-lived cells may serve as an archive that drive ongoing viral recombination events in vivo.

Highlights

  • Template switching between two distinct HIV-1 RNA genomes during reverse transcription gives rise to recombinant viruses that greatly expand the genetic diversity of HIV-1 and have adverse implications for drug resistance, immune escape, and vaccine design

  • The genetic diversity of HIV-1 variants presents a significant challenge to vaccine design [11]

  • Combination reporter viruses are produced by cotransfecting a packaging cell line with an NL4-3 core containing an egfp gene in the place of env gp120, a plasmid encoding a β-lactamase–vpr fusion gene, and a plasmid expressing an envelope gene, typically R5or X4-tropic HIV env

Read more

Summary

Introduction

Template switching between two distinct HIV-1 RNA genomes during reverse transcription gives rise to recombinant viruses that greatly expand the genetic diversity of HIV-1 and have adverse implications for drug resistance, immune escape, and vaccine design. Previous studies have revealed higher than expected frequencies of doubly infected cells compared to frequencies based on chance alone, suggesting non-random enhancement of double infection

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.