Abstract
Abstract. Let {Zt}t0 be a Lévy process with Lévy measure ν and let be a random clock, where g is a non‐negative function and is an ergodic diffusion independent of Z. Time‐changed Lévy models of the form are known to incorporate several important stylized features of asset prices, such as leptokurtic distributions and volatility clustering. In this article, we prove central limit theorems for a type of estimators of the integral parameter β(ϕ):=∫ϕ(x)ν(dx), valid when both the sampling frequency and the observation time‐horizon of the process get larger. Our results combine the long‐run ergodic properties of the diffusion process with the short‐term ergodic properties of the Lévy process Z via central limit theorems for martingale differences. The performance of the estimators are illustrated numerically for Normal Inverse Gaussian process Z and a Cox–Ingersoll–Ross process .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.