Abstract
In this paper, we are concerned with the large N limit of linear combinations of the entries of a Brownian motion on the group of N by N unitary matrices. We prove that the process of such a linear combination converges to a Gaussian one. Various scales of time and various initial distribution are concerned, giving rise to various limit processes, related to the geometric construction of the unitary Brownian motion. As an application, we propose a quite short proof of the asymptotic Gaussian feature of the linear combinations of the entries of Haar distributed random unitary matrices, a result already proved by Diaconis et al.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin de la Société mathématique de France
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.