Abstract
We establish the central limit theorem for quadratic forms $\Sigma_{t, s=1}^N b(t - s)P_{m, n} (X_t, X_s)$ of the bivariate Appell polynomials $P_{m, n} (X_t, X_x))$ under time-domain conditions. These conditions relate the weights $b(t)$ and the covariances of the sequences $(P_{m, n} (X_t, X_s))$ and $(X_t)$. The time-domain approach, together with the spectral domain approach developed earlier, yields a general set of conditions for central limit theorems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.