Abstract
Central limit theorems and invariance principles are obtained for additive functionals of a stationary ergodic Markov chain, say $S_n = g(X_1)+ \cdots + g(X_n)$ where $E[g(X_1)]= 0$ and $E[g(X_1)^2]<\infty$. The conditions imposed restrict the moments of $g$ and the growth of the conditional means $E(S_n|X_1)$. No other restrictions on the dependence structure of the chain are required. When specialized to shift processes,the conditions are implied by simple integral tests involving $g$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.