Abstract

We consider additive functionals INTt-0 V(ns )ds of symmetric zero-range processes, where V is a mean zero local function. In dimensions 1 and 2 we obtain a central limit theorem for a-1(t) INTt-0 V(ns)ds with a(t) = SQRROOT (tlogt) in d =2 and a(t) = t 3/4 in d = 1 and an explicit form for the asymptotic variance SIGMA2. The transient case d greater than or equal to 3 can be handled by standard arguments [KV, SX,S]. We also obtain corresponding invariance principles. This generalizes results obtained by Port (see [CG]) for noninteracting random walks and Kipnis [K] for the symmetric simple exclusion process. Our main tools are the martingale method together with L2 decay estimates [JLQY] for the process semigroup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.