Abstract

We consider a supercritical general branching population where the lifetimes of individuals are i.i.d. with arbitrary distribution and each individual gives birth to new individuals at Poisson times independently from each others. The population counting process of such population is a known as binary homogeneous Crump-Jargers-Mode process. It is known that such processes converges almost surely when correctly renormalized. In this paper, we study the error of this convergence. To this end, we use classical renewal theory and recent works [17, 6, 5] on this model to obtain the moments of the error. Then, we can precisely study the asymptotic behaviour of these moments thanks to Levy processes theory. These results in conjunction with a new decomposition of the splitting trees allow us to obtain a central limit theorem. MSC 2000 subject classifications: Primary 60J80; secondary 92D10, 60J85, 60G51, 60K15, 60F05.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.