Abstract

Given a random variable $N$ with values in ${\mathbb{N}}$, and $N$ i.i.d. positive random variables $\{\mu_k\}$, we consider a queue with renewal arrivals and $N$ exponential servers, where server $k$ serves at rate $\mu_k$, under two work conserving routing schemes. In the first, the service rates $\{\mu_k\}$ need not be known to the router, and each customer to arrive at a time when some servers are idle is routed to the server that has been idle for the longest time (or otherwise it is queued). In the second, the service rates are known to the router, and a customer that arrives to find idle servers is routed to the one whose service rate is greatest. In the many-server heavy traffic regime of Halfin and Whitt, the process that represents the number of customers in the system is shown to converge to a one-dimensional diffusion with a random drift coefficient, where the law of the drift depends on the routing scheme. A related result is also provided for nonrandom environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.