Abstract

The germ-grain model is defined as the union of independent identically distributed compact random sets (grains) shifted by points (germs) of a point process. The paper introduces a family of stationary random measures in ℝ d generated by germ-grain models and defined by the sum of contributions of non-overlapping parts of the individual grains. The main result of the paper is the central limit theorem for these random measures, which holds for rather general independently marked germ-grain models, including those with non-Poisson distribution of germs and non-convex grains. It is shown that this construction of random measures includes those random measures obtained by positively extended intrinsic volumes. In the Poisson case it is possible to prove a central limit theorem under weaker assumptions by using approximations by m-dependent random fields. Applications to statistics of the Boolean model are also discussed. They include a standard way to derive limit theorems for estimators of the model parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.