Abstract

Previous studies have shown that peripheral nerve injury upregulated both glucocorticoid receptors (GR) and cannabinoid-1 receptors (CB1R) within the spinal cord dorsal horn in rats. However, the relationship between the expression of spinal GR and CB1R after nerve injury remains unclear. Here, we examined the hypothesis that the upregulation of spinal CB1R induced by chronic constriction nerve injury (CCI) in rats would be regulated by spinal GR. CCI induced the upregulation of spinal CB1R primarily within the ipsilateral spinal cord dorsal horn as revealed by Western blot and immunohistochemistry. The expression of CB1R in CCI rats was substantially attenuated by intrathecal treatment with either the GR antagonist RU38486 or a GR antisense oligonucleotide given twice daily for postoperative day 1–6, whereas the expression of spinal CB1R was enhanced following intrathecal administration of a GR sense oligonucleotide twice daily for postoperative day 1–6. Furthermore, the upregulation of spinal CB1R after nerve injury was prevented in adrenalectomized rats, which was at least partially restored with the intrathecal administration of an exogenous GR agonist dexamethasone, indicating that corticosteroids (endogenous GR agonists) were critical to spinal GR actions. Since the development of neuropathic pain behaviors in CCI rats was attenuated by either RU38486 or a GR antisense oligonucleotide, these results suggest that CB1R is a downstream target for spinal GR actions contributory to the mechanisms of neuropathic pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call