Abstract

We classify the precrossed module central extensions using the second cohomology group of precrossed modules. We relate these central extensions to the relative central group extensions of Loday, and to other notions of centrality defined in general contexts. Finally we establish a Universal Coefficient Theorem for the (co)homology of precrossed modules, which we use to describe the precrossed module central extensions in terms of the generalized Galois theory developed by Janelidze.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.