Abstract

Abstract RXJ 1301.9+2747 is an optically identified very-low-mass AGN candidate with , which shows extremely soft X-ray emission and unusual X-ray variability in the form of short-lived flares. We present an analysis of multiwavelength observations of RXJ 1301.9+2747 in order to study the properties of the active nucleus and its host galaxy. The UV-to-X-ray spectrum in the quiescent state can be well and self-consistently described by a thermal and a Comptonized emission from the accretion disk, with the black body dominating ∼70% of the X-rays in the 0.2–2 keV. The same model can describe the X-ray spectrum in the flare state, but the Comptonized component becomes dominant (∼80%). The best fit implies an Eddington ratio of ∼0.14 and a black-hole mass of M ⊙, in agreement with the estimation from the optical data within errors. However, the best-fitting model under predicts the optical flux for the HST point source by a factor of ∼2. The excess of nuclear optical emission could be attributed to a nuclear stellar cluster, which is frequently seen in low-mass AGNs. The X-ray to optical spectral slope ( ) is lower than in most other active galaxies, which may be attributed to intrinsically X-ray weakness due to very little hot and optically thin coronal emission. We performed a pilot search for weak or hidden broad emission lines using optical spectropolarimetry observations, but no polarized broad lines are detected. The host galaxy appears to be a disk galaxy with a boxy pseudobulge or nuclear bar accounting for ∼15% of the total starlight, which is consistent with the general characteristics of the host of low-mass AGNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call