Abstract

This paper explores for the first time the consequences of centrally imposed local tax limitations on the modelling and estimation of spatial auto-correlation in local fiscal policies, and compares three spatial interaction estimators: a) the conventional maximum likelihood estimator that ignores censoring; b) a spatial Tobit estimator; c) a discrete hazard estimator. Implementation of the above empirical approaches on the case of local vehicle taxation in Italy provides a reasonably coherent picture in terms of the direction and size of the spatial interaction process, and offers a plausible spatial interpretation of the race to the top in provincial vehicle taxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.