Abstract

In mammals, a large body of evidence supports the existence of a brain renin–angiotensin system (RAS) acting independently or synergistically with the endocrine RAS to maintain diverse physiological functions, notably cardiovascular homeostasis. The RAS is of ancient origin and although most components of the RAS are present within the brain of teleost fishes, little is known regarding the central physiological actions of the RAS in these vertebrates. The present review encompasses the most relevant functional data for a role of the brain RAS in cardiovascular regulations in our experimental animal model, the unanesthetized trout Oncorhynchus mykiss. This paper mainly focuses on the central effect of angiotensin II (ANG II) on heart rate, blood pressure, heart rate variability and cardiac baroreflex, after intracerebroventricular injection or local microinjection of the peptide within the dorsal vagal motor nucleus. The probable implications of the parasympathetic nervous system in ANG II-evoked changes in the cardiac responses are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.