Abstract

Intracerebroventricular (ICV) angiotensin (AIl) administration stimulates central AII receptors to induce water consumption in rats. The aim of this study was to determine the role of brain AT1 and AT2 receptors in mediating chronic ICV AII-induced drinking in rats raised on normal or high sodium chloride diets from weaning. Rats were weaned at 21 days of age and placed on normal or high sodium chloride diet for 10-12 weeks. At adulthood, the animals were instrumented with brain lateral ventricular cannulas and femoral arterial catheters. Low dose chronic central AII infusion (20 ng min(-1)) significantly (P < 0.05) increased water intake in both groups of rats when compared with their respective controls of 24 h artificial cerebrospinal fluid infusions. In a separate group of high sodium fed rats, coinfusion of AII with the AT1 receptor antagonist, losartan (0.25 microg min(-1)) or the AT2 receptor blocker, PD 123319 (0.50 microg min(-1)) blocked chronic ICV AII-induced drinking. Upon reinfusion of AII water intake increased above control. Following the cessation of AII infusions, water intake returned to values not significantly different from control (P > 0.05). In contrast, in the normal sodium fed rats losartan, but not PD 123319, blocked the AII-mediated water intake. The data demonstrate that in high sodium chloride fed rats AII stimulates both central AT1 and AT2 receptors to induce drinking, while in the normal sodium chloride fed rats the peptide activates the drinking response primarily by stimulation of central AT1 receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call