Abstract

The objective of this study was to test the hypotheses that chondrocytes from distinct regions of the porcine tibial plateau: (1) display region-specific baseline gene expression, and (2) respond differently to in vitro mechanical loading. Articular cartilage explants were obtained from central (not covered by meniscus) and peripheral (covered by meniscus) regions of porcine tibial plateaus. For baseline gene expression analysis, samples were snap frozen. To determine the effect of mechanical loading, central and peripheral region explants were exposed to equivalent dynamic compression (0-100 kPa) and compared to site-matched free-swelling controls (FSCs). mRNA levels for type II collagen (CII), aggrecan (AGGR), matrix metalloproteinase 1 (MMP-1), MMP-3, MMP-13, A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAM-TS4), ADAM-TS5, tissue inhibitor of metalloproteinases 1 (TIMP-1), TIMP-2, and tumor necrosis factor alpha (TNFalpha) were quantified using real time polymerase chain reaction (RT-PCR). At baseline, mRNA levels for the structural proteins CII and AGGR were approximately twofold greater in the central region compared with peripheral region explants. In vitro dynamic compression strongly affected expression levels for CII, AGGR, MMP-3, and TIMP-2 relative to FSCs. Response differed significantly by region, with greater upregulation of CII, AGGR, and MMP-3 in central region explants. Chondrocytes from different regions of the porcine tibial plateau express mRNA for structural proteins at different levels and respond to equivalent in vitro mechanical loading with distinctive changes in gene expression. These regional biological variations appear to be related to the local mechanical environment in the normal joint, and thus may indicate a sensitivity of the joint to conditions that alter joint loading such as anterior cruciate ligament (ACL) injury, meniscectomy, or joint instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.