Abstract

Hypothalamic RFamide-related peptide-3 (RFRP-3) neurons inhibit LH secretion via a central action. A direct hypophysiotropic action on the gonadotropes has also been suggested. To assess central RFRP-3 effects on the GnRH/LH surge that induces ovulation, ovariectomized rats were subjected to an estradiol plus progesterone surge-induction protocol. Chronic infusion of RFRP-3 (2.5 or 25 ng/h, intracerebroventricularly) caused a dose-dependent 50-60% inhibition of GnRH neuronal activation (assessed by colocalization with the immediate early gene c-Fos) at the surge peak compared with vehicle-treated controls. RFRP-3 also suppressed neuronal activation in the anteroventral periventricular region, which provides stimulatory input to GnRH neurons, by 50-80% compared with control values. To test whether centrally administered RFRP-3 inhibits pulsatile GnRH/LH secretion, chronically ovariectomized, low-level estradiol-treated rats without surge induction were blood sampled every 10 min for 4 h. Bolus injection of RFRP-3 (0, 2.5, or 25 microg, intracerebroventricularly) after 1.5 h did not affect subsequent LH pulse frequency, pulse amplitude, or the mean concentrations of LH or prolactin. RFRP-3 treatment of isolated anterior pituitary cells at moderate doses of up to 10(-7) m did not significantly inhibit LH release, either with or without GnRH cotreatment. These data reveal a central inhibitory effect of RFRP-3 on the hypothalamo-pituitary gonadal axis specifically during the estradiol-induced GnRH/LH surge. This effect may include actions of RFRP-3 on GnRH neurons and/or their anteroventral periventricular afferent inputs but is unlikely to involve direct inhibition of LH secretion at the level of the gonadotrope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.