Abstract
Dans ce papier, nous prouvons des théorèmes de la limite centrale et non-centrale pour les variations à poids d’ordre q du mouvement brownien fractionnaire d’indice H∈(0, 1), pour q un entier supérieur ou égal à 2. Il y a trois cas, suivant la position de H par rapport à 1/2q et 1−1/2q. Si 1/2q<H≤1−1/2q, nous montrons un théorème de la limite centrale vers une variable aléatoire de loi conditionnellement gaussienne. Si H<1/2q, nous montrons la convergence dans L2 vers une limite qui dépend seulement du mouvement brownien fractionnaire. Si H>1−1/2q, nous montrons la convergence dans L2 vers une intégrale stochastique par rapport au processus d’Hermite d’ordre q.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.