Abstract

Parallel disk systems are capable of fulfilling rapidly increasing demands on both large storage capacity and high I/O performance. However, it is challenging to significantly increase disk I/O bandwidth for data-intensive workloads due to (1) reliability and instant processing of data requests under dynamic workload conditions, and (2) the optimum tradeoff between system scalability and data reliability in data-intensive systems. To increase computing performance and reduce power consumption, Graphics Processing Units (GPUs) will be used. As the architectures and data processing algorithms for GPU-based parallel disk systems are still in their infancy, this research will develop novel hardware and software architectures that include parallel GPU, flash disks, and disk arrays for data-intensive applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.