Abstract
BackgroundCarnosine (β-alanyl-L-histidine) is a putative neurotransmitter and has a possible role in neuron-glia cell interactions. Previously, we reported that carnosine induced hyperactivity in chicks when intracerebroventricularly (i.c.v.) administered. In the present study, we focused on other β-alanyl dipeptides to determine if they have novel functions.ResultsIn Experiment 1, i.c.v. injection of β-alanyl-L-leucine, but not β-alanyl-glycine, induced hyperactivity behavior as observed with carnosine. Both carnosine and β-alanyl-L-leucine stimulated corticosterone release. Thus, dipeptides of β-alanyl-branched chain amino acids were compared in Experiment 2. The i.c.v. injection of β-alanyl-L-isoleucine caused a similar response as β-alanyl-L-leucine, but β-alanyl-L-valine was somewhat less effective than the other two dipeptides. β-Alanyl-L-leucine strongly stimulated, and the other two dipeptides tended to stimulate, corticosterone release.ConclusionThese results suggest that central β-alanyl-branched chain amino acid stimulates activity in chicks through the hypothalamus-pituitary-adrenal axis. We named β-alanyl-L-leucine, β-alanyl-L-isoleucine and β-alanyl-L-valine as Excitin-1, Excitin-2 and Excitin-3, respectively.
Highlights
Carnosine (β-alanyl-L-histidine) is a putative neurotransmitter and has a possible role in neuron-glia cell interactions
Carnosine seems to possess a number of protective functions including anti-oxidant, free-radical scavenger and anti-glycating agent, as well as being able to bind to protein carbonyls and suppress their cross-linking activity [4,5]
We focused on a role of β-alanine as a neurotransmitter and investigated the effect of dipeptides having β-alanine at the amino terminus
Summary
Carnosine (β-alanyl-L-histidine) is a putative neurotransmitter and has a possible role in neuron-glia cell interactions. Alanine is the only naturally occurring β-amino acid found in its free state in the brain. It is a component of carnosine (β-alanyl-L-histidine) and anserine (β-alanyl-1methyl-L-histidine). Ever since carnosine was discovered, it is thought to be a putative neurotransmitter in the olfactory receptor neurons [3]. Carnosine seems to possess a number of protective functions including anti-oxidant, free-radical scavenger and anti-glycating agent, as well as being able to bind to protein carbonyls and suppress their cross-linking activity [4,5]. Intracerebroventricular (i.c.v.) injection of carnosine dramatically induced hyperactivity such as increasing spontaneous activity and distress vocalizations and increasing (page number not for citation purposes)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.