Abstract

This paper describes a novel docking mechanism for space applications. Generally speaking, docking mechanisms have two main objectives. On the one hand, they have to recover the linear and angular errors between a servicer and a customer spacecraft. On the other hand, they have to dissipate the kinetic energy associated with the relative motion between the bodies. The proposed docking mechanism consists of an active part mounted on the servicer spacecraft and a passive one linked to the target. The active part is equipped with a retractable rod fitted to a two degrees of freedom rotational joint. The rod is pointed toward a spherically suspended socket mounted on the target using electrical actuators exploiting optical feedback. The multibody simulations used to test the feasibility of the system are briefly presented. Finally, some alternative mechanical implementations of the pointing system will be described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.