Abstract

Circularly polarized 3.5 cm continuum emission was detected toward three radio sources in the R CrA region using the Very Large Array. The Class I protostar IRS 5b persistently showed polarized radio emission with a constant helicity over 8 yr, which suggests that its magnetosphere has a stable configuration. There is a good correlation between the Stokes I and Stokes V fluxes, and the fractional polarization is about 0.17. During active phases the fractional polarization is a weakly decreasing function of Stokes I flux, which suggests that IRS 5b is phenomenologically similar to other types of flare stars such as RS CVn binaries. The variability timescale of the polarized flux is about a month, and the magnetosphere of IRS 5b must be very large in size. The Class I protostar IRS 7A was detected once in circularly polarized radio emission, even though IRS 7A drives a thermal radio jet. This detection implies that the radio emission from the magnetosphere of a young protostar can escape the absorption by the partially ionized wind at least once in a while. The properties of IRS 7A and IRS 5b suggests that Class I protostars have organized peristellar magnetic fields of a few kilogauss and that the detectability of magnetospheric emission may depend on the evolutionary status of protostar. Also reported is the detection of circularly polarized radio emission toward the variable radio source B5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call