Abstract
We consider two distinct centers which arise in measuring how quickly a random walk on a tree mixes. Lovasz and Winkler [Efficient stopping rules for Markov chains, in Proceedings of the 27th ACM Symposium on the Theory of Computing, 1995, pp. 76-82] point out that stopping rules which “look where they are going” (rather than simply walking a fixed number of steps) can achieve a desired distribution exactly and efficiently. Considering an optimal stopping rule that reflects some aspect of mixing, we can use the expected length of this rule as a mixing measure. On trees, a number of these mixing measures identify particular nodes with central properties. In this context, we study a variety of natural notions of centrality. Each of these criteria identifies the barycenter of the tree as the “average” center and the newly defined focus as the “extremal” center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.