Abstract

The composed error of a stochastic frontier (SF) model consists of two random variables, and the identification of the model relies heavily on the distribution assumptions for each of these variables. While the literature has put much effort into applying various SF models to a wide range of empirical problems, little has been done to test the distribution assumptions of these two variables. In this article, by exploiting the specification structures of the SF model, we propose a centered-residuals-based method of moments which can be easily and flexibly applied to testing the distribution assumptions on both of the random variables and to estimating the model parameters. A Monte Carlo simulation is conducted to assess the performance of the proposed method. We also provide two empirical examples to demonstrate the use of the proposed estimator and test using real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.