Abstract
We show how the infinite color-Coulomb energy of color-charged states is related to enhanced density of near-zero modes of the Faddeev-Popov operator, and calculate this density numerically for both pure Yang-Mills and gauge-Higgs systems at zero temperature, and for pure gauge theory in the deconfined phase. We find that the enhancement of the eigenvalue density is tied to the presence of percolating center vortex configurations, and that this property disappears when center vortices are either removed from the lattice configurations, or cease to percolate. We further demonstrate that thin center vortices have a special geometrical status in gauge-field configuration space: Thin vortices are located at conical or wedge singularities on the Gribov horizon. We show that the Gribov region is itself a convex manifold in lattice configuration space. The Coulomb gauge condition also has a special status; it is shown to be an attractive fixed point of a more general gauge condition, interpolating between the Coulomb and Landau gauges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.