Abstract

It is generally accepted that densities of quiet sun and active region plasma are sufficiently low to justify the optically thin approximation, and it is commonly used in the analysis of line emissions from plasma in the solar corona. However, densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Further, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk-center. The model predictions are validated with an analysis of over 200 flares observed by EVE on SDO that uses 6 lines, with peak formation temperatures between 8.9 and 15.8 MK, to show limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line-of-sight typically increases by 1.76 x 1019 cm-2 for limb flares over the disk-center flare value. It is shown that CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and changes the relative intensities of lines and bands commonly used for spectral analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.