Abstract
Center manifold theory forms one of the cornerstones of the theory of dynamical systems. This is already true for finite-dimensional systems, but it holds a fortiori in the infinite-dimensional case. In its simplest form center manifold theory reduces the study of a system near a (non-hyperbolic) equilibrium point to that of an ordinary differential equation on a low-dimensional invariant center manifold. For finite-dimensional systems this means a (sometimes considerable) reduction of the dimension, leading to simpler calculations and a better geometric insight. When the starting point is an infinite-dimensional problem, such as a partial, a functional or an integro differential equation, then the reduction forms also a qualitative simplification. Indeed, most infinite-dimensional systems lack some of the nice properties which we use almost automatically in the case of finite-dimensional flows. For example, the initial value problem may not be well posed, or backward solutions may not exist; and one has to worry about the domains of operators or the regularity of solutions. Therefore the reduction to a finite-dimensional center manifold, when it is possible, forms a most welcome tool, since it allows us to recover the familiar and easy setting of an ordinary differential equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.