Abstract

The center problem and bifurcation of limit cycles for degenerate singular points are far to be solved in general. In this paper, we study center conditions and bifurcation of limit cycles at the degenerate singular point in a class of quintic polynomial vector field with a small parameter and eight normal parameters. We deduce a recursion formula for singular point quantities at the degenerate singular points in this system and reach with relative ease an expression of the first five quantities at the degenerate singular point. The center conditions for the degenerate singular point of this system are derived. Consequently, we construct a quintic system, which can bifurcates 5 limit cycles in the neighborhood of the degenerate singular point. The positions of these limit cycles can be pointed out exactly without constructing Poincaré cycle fields. The technique employed in this work is essentially different from more usual ones. The recursion formula we present in this paper for the calculation of singular point quantities at degenerate singular point is linear and then avoids complex integrating operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.