Abstract
Abstract In this paper, we consider the l1-clustering problem for a finite data-point set which should be partitioned into k disjoint nonempty subsets. In that case, the objective function does not have to be either convex or differentiable, and generally it may have many local or global minima. Therefore, it becomes a complex global optimization problem. A method of searching for a locally optimal solution is proposed in the paper, the convergence of the corresponding iterative process is proved and the corresponding algorithm is given. The method is illustrated by and compared with some other clustering methods, especially with the l2-clustering method, which is also known in the literature as a smooth k-means method, on a few typical situations, such as the presence of outliers among the data and the clustering of incomplete data. Numerical experiments show in this case that the proposed l1-clustering algorithm is faster and gives significantly better results than the l2-clustering algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Mathematics and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.