Abstract

During the 20th century the impacts of industrialization and urbanization in Galveston Bay resulted in significant shifts in trace metals (Hg, Pb, Ni, Zn) and vascular plant biomarkers (lignin phenols) recorded within the surface sediments and sediment cores profile. A total of 22 sediment cores were collected in Galveston Bay in order to reconstruct the historical input of Hg, Pb, Ni, Zn and terrestrial organic matter. Total Hg (T-Hg) concentration ranged between 6 and 162 ng g−1 in surface sediments, and showed decreasing concentrations southward from the Houston Ship Channel (HSC) toward the open estuary. Core profiles of T-Hg and trace metals (Ni, Zn) showed substantial inputs starting in 1905, with peak concentrations between 1960 and 1970's, and decreasing thereafter with exception to Pb, which peaked around 1930–1940s. Stable carbon isotopes and lignin phenols showed an increasing input of terrestrial organic matter driven by urban development within the watershed in the early 1940s. Both the enrichment factor and the geoaccumulation index (Igeo) for T-Hg as a measure of the effectiveness of environmental management practices showed substantial improvements since the 1970s. The natural recovery rate in Galveston Bay since the peak input of T-Hg was non-linear and displayed a slow recovery during the twenty-first century.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call