Abstract

Studies with Centchroman (CC) as a candidate anti-breast cancer agent are into phase III multicentric clinical trial in stage III/IV breast cancer. We have previously demonstrated its anti-neoplastic activity in Estrogen Receptor positive (ER+ve) MCF-7 Human Breast Cancer Cells (HBCCs). We now present the basis for anti-neoplastic activity of CC, mediated through apoptosis in both ER+ve/−ve MCF-7 and MDA MB-231 HBCCs respectively, compared to Tamoxifen (TAM) as a positive control. All the experiments were performed with 48 h estrogen-deprived cells exposed to CC/TAM for the subsequent 48 h. Cytotoxic potential of CC was assessed through SRB assay. Cell-cycle analysis, Time-dependent cytotoxicity, Reactive Oxygen Species (ROS) and Mitochondrial Membrane Permeability were investigated by Flow Cytometry. Early-stage apoptosis was detected by Annexin–PI staining. Caspases were assayed colorimetrically whereas nuclear derangements were assessed morphologically through PI staining and finally by DNA fragmentation analysis. Cell viability studies confirmed the IC 50 of CC in MCF-7 and MDA MB-231 cells to be 10 and 20 μM ( P < 0.001) respectively, suggesting enhanced susceptibility of the former cell type to CC. FACS data reveals CC mediated G 0/G 1 arrest ( P < 0.01) along with the presence of prominent sub-G 0/G 1 peak ( P < 0.001) in both the cell types suggesting ongoing apoptosis. Phosphatidylserine externalization, mitochondrial events, caspase evaluation and nuclear morphology changes reveal initiation/progression of caspase-dependent apoptosis even at a dose of 1 μM which eventually leads to DNA fragmentation in both the cell types. Results demonstrate that CC induces caspase-dependent apoptosis in MCF-7 and MDA MB-231 cells irrespective of ER status similar to TAM in terms of anti-neoplastic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call