Abstract
Abstract Based on the popular Caputo fractional derivative of order β in (0, 1), we define the censored fractional derivative on the positive half-line ℝ+. This derivative proves to be the Feller generator of the censored (or resurrected) decreasing β-stable process in ℝ+. We provide a series representation for the inverse of this censored fractional derivative. We are then able to prove that this censored process hits the boundary in a finite time τ ∞, whose expectation is proportional to that of the first passage time of the β-stable subordinator. We also show that the censored relaxation equation is solved by the Laplace transform of τ ∞. This relaxation solution proves to be a completely monotone series, with algebraic decay one order faster than its Caputo counterpart, leading, surprisingly, to a new regime of fractional relaxation models. Lastly, we discuss how this work identifies a new sub-diffusion model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.