Abstract
Centromeres are defined epigenetically by nucleosomes containing the histone H3 variant CENP‐A, upon which the constitutive centromere‐associated network of proteins (CCAN) is built. CENP‐C is considered to be a central organizer of the CCAN. We provide new molecular insights into the structure of human CENP‐A nucleosomes, in isolation and in complex with the CENP‐C central region (CENP‐CCR), the main CENP‐A binding module of human CENP‐C. We establish that the short αN helix of CENP‐A promotes DNA flexibility at the nucleosome ends, independently of the sequence it wraps. Furthermore, we show that, in vitro, two regions of human CENP‐C (CENP‐CCR and CENP‐Cmotif) both bind exclusively to the CENP‐A nucleosome. We find CENP‐CCR to bind with high affinity due to an extended hydrophobic area made up of CENP‐AV532 and CENP‐AV533. Importantly, we identify two key conformational changes within the CENP‐A nucleosome upon CENP‐C binding. First, the loose DNA wrapping of CENP‐A nucleosomes is further exacerbated, through destabilization of the H2A C‐terminal tail. Second, CENP‐CCR rigidifies the N‐terminal tail of H4 in the conformation favoring H4K20 monomethylation, essential for a functional centromere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.