Abstract
AbstractThe long‐term extent of the Earth system response to anthropogenic interference remains uncertain. However, the geologic record offers insights into this problem as Earth has previously cycled between warm and cold intervals during the Phanerozoic. We present an updated compilation of surface temperature proxies for several key time intervals to reconstruct global temperature changes during the Cenozoic. Our data synthesis indicates that Earth’s surface slowly cooled by ca. 9°C during the early Paleogene to late Neogene and that continent‐scale ice sheets developed after global temperature dropped to less than 10°C above preindustrial conditions. Slow cooling contrasts with the steep decrease in combined radiative forcing from past CO2 concentrations, solar luminosity, and ocean area, which was close to preindustrial levels even as Earth remained in a much warmer state. From this, we infer that the Earth system was less sensitive to greenhouse gas forcing for most of the Cenozoic and that sensitivity must have increased by at least a factor of 2 during the Plio‐Pleistocene. Our results imply that slow feedbacks will raise global surface temperatures by more than 3°C in the coming millennia, even if anthropogenic forcing is stabilized at the present‐day value (2 W/m2), and that their impact will diminish with further warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.