Abstract

AbstractThe India‐Asia collision resulted in the Cenozoic framework of faults, ranges, and tectonic basins and the high topography of the northeastern Tibetan Plateau, but how and when these features formed remains poorly understood, leading to conflicting tectonic models. However, information on the tectonic evolution of these active orogenic belts is well preserved in synorogenic basin sediments. In this study, we carefully analyze the detrital apatite fission track ages of Cenozoic synorogenic sediments from the Jiuquan Basin to decipher the entire exhumation process of the adjacent Qilian Shan throughout the Cenozoic. Our data indicate that initially rapid Cenozoic exhumation occurred in the Qilian Shan during the late Paleocene‐early Eocene (~60–50 Ma), almost synchronous with the India‐Asia collision. The Qilian Shan subsequently experienced long‐lived exhumation that continued until at least the middle Miocene (~45–10 Ma). During this period of exhumation in the Qilian Shan, tectonic deformation occurred throughout the northeastern Tibetan Plateau. The early Cenozoic deformation in the northeastern Tibetan Plateau may have been caused by the transfer of tectonic stress from the distant India‐Asia collision boundary through the complex lithospheric environment of the Tibetan Plateau. The present tectonic configuration and topography of the Qilian Shan and the northeastern Tibetan Plateau likely became established since the middle Miocene and after the long‐lived deformation began in the early Cenozoic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call