Abstract
AbstractThe Andean Plateau of north‐western Argentina (Puna) at a mean elevation of ca. 4.2 km constitutes the southern continuation of the Altiplano; it is a compressional basin‐and‐range province comprising fault‐bounded, high‐elevation mountain ranges and largely internally drained basins with often thick sedimentary and volcaniclastic fill. Growing sedimentological and structural evidence supports the notion that the north‐western Argentine Andes between 22° and 26°S developed from an initial extensive broken‐foreland system that extended across the present‐day eastern Andean flank during the early to middle Eocene. However, compelling evidence of the tectonic history of this region is still missing. Here, we present new apatite fission track and zircon (U–Th)/He thermochronological data and U–Pb zircon ages from intercalated volcanic ash deposits from the Pastos Chicos Basin (23.5°S, 66.5°W) to constrain basin formation and the timing of major crustal deformation in the northern Puna. Inverse thermal modeling of the thermochronological data provides further temporal constraints on the late Cenozoic cooling history of the crust in this region and, by inference, on the timing of upper‐crustal shortening, range uplift, and basin formation in the northern sector of the present‐day Puna Plateau. Specifically, we argue for plateau‐wide distributed deformation in the Eocene between 23° and 24°S, followed by spatially disparate and diachronous deformation (Oligocene to Pliocene).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.