Abstract

Bone cement is commonly used to affix femoral implants to the bone during total hip reconstruction. Previous studies suggest that the expected life of a cemented femoral implant may depend on the thickness of the cement mantle surrounding the implant and the implant geometry. The purpose of this study was to determine whether different cement-mantle thicknesses and femoral stem sizes affected strain patterns in the bone cement around cemented femoral stems. Two different sizes of cobalt-chromium stems were cemented into composite femora with varying cement-mantle thickness. Strain gages were embedded in the cement mantle and the implanted stems were loaded axially and under conditions simulating walking and standing. An increase in stem size with the same cement-mantle thickness (approximately 2.2 mm) caused a 65% decrease in proximal medial cement strains. Increasing cement mantle thickness from 2.4 to 3.7 mm caused substantial strain reductions in the distal cement (40–49%). We conclude that increased cement-mantle thickness around femoral stems may increase the fatigue life of a bone-implant system by reducing pcak strains within the cement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call