Abstract

For civil engineers, expansive soils pose a great deal of difficulty because of their sensitivity to volume changes with different moisture levels. These difficulties are compounded by the widespread occurrence of swelling clay, which can seriously harm infrastructure, especially in arid or semi-arid areas. The geotechnical qualities of these soils have been improved through the use of various additives and techniques, resolving this problem and making the soils suitable for building. Numerous stabilization techniques, nevertheless, may have negative environmental effects. Therefore, it is imperative to investigate the use of local waste or by-products to stabilize soil in order to preserve the environment and lower stabilization costs, especially in road construction projects.To address these issues, an experiment was conducted to determine how locally obtained cement kiln dust (CKD), both alone and combined with polypropylene fibers, affected the properties of plastic clay soil, also referred to as expansive clay from Cheffia.The main objective of this study is to assess how well different CKD percentages (from 5% to 25%) stabilize soil while improving its mechanical and physical properties. The study also aims to explain how the addition of polypropylene fiber affects the unconfined compressive strength and compaction behavior of the soil in the optimal CKD-soil mixture. The results of the analysis show that the addition of cement kiln dust (CKD) significantly improved the studied soil's workability, compaction, and strength. Additionally, adding polypropylene fibers strengthens the clay's resistance to compression, which presents encouraging opportunities for reducing the difficulties brought on by expansive soils in civil engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call