Abstract
About 70% of all of the liquid and solid hazardous wastes commercially incinerated in the United States is being burned in cement kilns. The process inevitably results in residues, primarily heavy metals, entering the clinker and waste dusts (cement kiln dust, CKD) produced by these kilns. The effects of this trend on the nature and chemical composition of cement, actual and future, are discussed. The wastes burned by cement kilns are expected to increasingly have higher levels of heavy metals per Btu. In general, the effects are very simple to describe but have as yet unknown consequences. The present American Society for Testing and Materials (ASTM) standard does not effectively control hazardous waste burning residues in Portland Cement. The regulatory and economic pressures on CKD disposal suggest that much of it, and its heavy metal residues, will, in time, end up in the clinker and the resultant cement. The end point to the trend is the ability to make cement that passes the performance specifications while containing high levels of heavy metals. The only other alternative is to maximize the levels of heavy metals in the CKD, minimize the amount of CKD, and dispose of its as a hazardous waste. It is recommended that an effort to correlate heavy metal levels in clinker with adverse effects be undertaken, a new standard for cement containing hazardous and other waste residuals be developed, and labeling be required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.