Abstract

BackgroundLignocellulose provides the only practical carbohydrates feedstock for sustainable bioproduction of hydrocarbons as future alternative of fossil fuels. Production of hydrocarbons from lignocellulose is achieved by a biorefinery process chain including pretreatment to breakdown the crystalline structure for cellulase-catalyzed hydrolysis, detoxification of inhibitory compounds generated during pretreatment, enzymatic hydrolysis to fermentable monosaccharide sugars, and fermentation to hydrocarbon products. The major barriers on fermentative production of hydrocarbons from lignocellulose include two aspects: one is the inherent stress of pretreatment-derived inhibitors on microbial cells, the other is the toxicity of hydrocarbons to cell membranes. The microbial cell factory should be tolerant to both inhibitor stress and hydrocarbons toxicity.ResultsCorynebacterium glutamicum was selected as the starting strain of hydrocarbons synthesis since it is well adapted to lignocellulose hydrolysate environment. The dual hydrocarbon synthesis pathways were constructed in an industrial C. glutamicum S9114 strain. The first pathway was the regular one in microalgae composed of fatty acyl-acyl carrier protein (fatty acyl-ACP) reductase (AAR) and aldehyde deformylating oxygenase (ADO) with fatty acyl-ACP as precursor. The second pathway was the direct decarboxylation of free fatty acid by fatty acid decarboxylase (OleT) using the rich fatty acids from the disruption of the transcriptional regulator fasR gene. The transmembrane transportation of hydrocarbon products was avoided by secretively expressing the fatty acid decarboxylase (OleT) to the extracellular space. The hydrocarbons generation from glucose reached 29.2 mg/L, in which the direct decarboxylation pathway contributed more than 70% of the total hydrocarbons generation, and the AAR–ADO pathway contributed the rest 30%.ConclusionThe dual hydrocarbon synthesis pathways (OleT and AAR–ADO pathways) were constructed in the inhibitors tolerant C. glutamicum S9114 strain for hydrocarbon production using lignocellulose feedstock as the starting feedstock. When corn stover was used for hydrocarbons production after dry acid pretreatment and biodetoxification, the hydrocarbons generation reached 16.0 mg/L. This study provided a new strategy for hydrocarbons synthesis using microbial cell factory suitable for lignocellulose feedstock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call