Abstract

BackgroundCellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions.ResultsIn this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L−1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L−1 and 82.74% degradation at 10 g L−1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation.ConclusionsThis study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.

Highlights

  • Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels

  • Cellulose and/ hemicellulose-fermenting thermophilic anaerobic bacteria those belonging to the genus Clostridium and Caldicellulosiruptor have potential for CBP due to their efficiency in the conversion of cellulosic substrates into ethanol [11, 12]

  • Enrichment, isolation, and phylogeny of the cellulose‐degrading thermophilic anaerobic bacteria Thermal hot water samples collected from various locations of the Puga hot spring were used as a source of the new cellulolytic strains

Read more

Summary

Introduction

Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. Consolidated bioprocessing (CBP) accomplishes production of cellulolytic enzymes, hydrolysis of lignocellulose and fermentation of resulting sugars (C5 and C6) to ethanol, or other valuable products, in a single vessel or reactor with low process complexity. CBP is an economical approach for the production of secondgeneration biofuel [2] This single-step conversion technology is based on a candidate CBP microbe or group of microbes having combined hydrolysis and fermentation ability [4, 6]. Cellulose and/ hemicellulose-fermenting thermophilic anaerobic bacteria those belonging to the genus Clostridium and Caldicellulosiruptor have potential for CBP due to their efficiency in the conversion of cellulosic substrates into ethanol [11, 12]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.