Abstract
In this study, to develop efficient adsorbents in removing water pollution, new cellulose-citric acid-chitosan@metal sulfide nanocomposites (CL-CA-CS@NiS and CL-CA-CS@CuS) were synthesized by one-pot reaction at mild conditions and characterized using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Energy Dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) isotherm. The results of characterization techniques confirm that the desired compounds have been successfully synthesized. The as-prepared composites were applied for the removal of methyl orange (MO) dye from aqueous solutions using a batch technique, and the effect of key factors such as initial pH, shaking time, MO concentration, temperature and adsorbent dose were investigated and discussed. Adsorption results exhibited positive impact of temperature, shaking time and adsorbent dose on the MO removal percent. The MO removal percent has been increased over a wide range of pH from 2 (27.6 %) to 6 (98.8 %). Also, almost being constant over a wide range of MO concentration (10–70 mg/L). The results demonstrated that the maximum removal percentage of MO dye (98.9 % and 93.4 % using CL-CA-CS@NiS and CL-CA-CS@CuS, respectively) was achieved under the conditions of pH 6, shaking time of 120 min, adsorbent dose of 0.02 g, MO concentration of 70 mg/L and temperature of 35 °C. The pseudo-second-order (PSO) and Langmuir models demonstrated the best fit to the kinetic and equilibrium data. Also, the thermodynamic results showed that the MO removal process is endothermic and spontaneous in nature. The MO adsorption can be happened by different electrostatic attraction, n-π and π-π stacking and also hydrogen bonding interaction. In addition, antibacterial activity of CL-CA-CS@NiS and CL-CA-CS@CuS nanocomposites exhibited a superior efficiency against S. aureus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.