Abstract
It is practical and challenging to construct ultrasensitive and multi-responsive sensors for visual and real-time monitoring of the environment. Herein, a cellulose-based multi-responsive fluorescent sensor (Phen-MDI-CA) is fabricated, and realizes a visual and ultrasensitive detection of not only various amines but also three anions based on the change of the fluorescence and/or visible colors. Once exposure to various amines in both the solution and vapor state, the Phen-MDI-CA solution and test paper exhibit different fluorescence colors, which can be used to distinguish triethylamine, ethylenediamine, methylamine, aniline, hydrazine and pyrrolidine from other amines. Moreover, via combining the Phen-MDI-CA with the Phen-MDI-CA/malachite green ratiometric system, phosphate (PO43−), carbonate (CO32-) and borate (B4O72-) can be visually and accurately recognized depending on the change of the visible and fluorescence colors. In fluorescent mode, the LOD for B4O72-, PO43− and CO32- ions is as low as 0.18 nmol, 0.69 nmol and 0.86 nmol, respectively. Significantly, the Phen-MDI-CA can readily make a qualitative and quantitative detection of B4O72-, PO43− and CO32- anions in the mixture of anions. The state-of-the-art responsive behavior of Phen-MDI-CA originates from the amplification effect of cellulose polymer chain and the differentiated interactions between the sensor and analytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.