Abstract

Biocomposites (biodegradable composites) are obtained by blending biodegradable polymers and fillers. Since the main components are biodegradable, the composite as a whole is also expected to be biodegradable. This paper presents various biocomposites that have been elaborated with cellulose or lignocellulose fibers from diverse sources, with different lignin contents. This paper is targeted on the analysis of 'fiber–matrix' interactions of two types of biocomposites based on agropolymer (plasticized wheat starch) and biopolyester (polybutylene adipate-co-terephthalate), named APB and BPB, respectively. Processing and main properties of both biocomposites are shown and compared. Polyolefin-based composite (PPC), which is known to present very poor 'fiber–matrix' interactions, is used as a reference. Through the Young's modulus, mechanical properties have shown that the reinforcement, by increasing fiber content, is much more significant for APB compared to BPB. The evolution of chains mobility, evidenced through shift of T g values, according to the increase in fiber content and thence in interfacial area, have shown that the fiber–matrix interactions are higher for APB. BPB presents intermediate values, higher than PPC ones. These results are in agreement with the analysis of the composite morphologies performed by SEM on cryogenic fractures. Finally, by determining the theoretical works of adhesion and the interfacial tensions from contact angle measurements, it is shown that these parameters are partially able to predict the level of interaction between the fibers and the matrix. We could show that the perspectives of such work seem to be of importance to tailor new materials with a controlled end-use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call