Abstract

Cellulose transparent and flexible film was prepared by dissolving micro-crystalline cellulose powder in Dimethylacetamide/Lithium Chloride (DMAc/LiCl) followed by regeneration in acetone and subsequent washing with water. The solution was cast on a glass plate. The interactions of water molecules and the swollen cellulose in the gel were examined by differential scanning calorimetry, DSC. An increased melting point of water in the gel indicated the presence of stronger bonding between water and cellulose than in the non-modified cellulose. The prepared dried films had 63 g/m2 weight and 0.06 mm thickness with 1.14 g/cm3 density.The prepared dry film exhibited high transparency, around 95% with visible light. The transparency and mechanical properties of the films were stable at high temperature (120°C) and exposure to UV irradiation. Thermal analysis of the prepared sample indicated film stability up to 275 °C. The tensile strength of the cellulose film was around 120 MPa with about 10% strain to break. The mechanical properties of the films were stable in alkali and acidic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.