Abstract

Cellulose synthase-like OsCSLD4 plays a pivotal role in regulating diverse agronomic traits, enhancing resistance against bacterial leaf blight, and modulating metabolite indices based on the multi-omics analysis in rice. To delve deeper into this complex network between agronomic traits and metabolites in rice, we have compiled a dataset encompassing genome, phenome, and metabolome, including 524 diverse accessions, 11 agronomic traits, and 841 metabolites, enabling us to pinpoint eight hotspots through GWAS. We later discovered four distinct metabolite categories, encompassing 15 metabolites that are concurrently present on the QTL qC12.1, associated with leaf angle of flag and spikelet length, and finally focused the cellulose synthase-like OsCSLD4, which was pinpointed through a rigorous process encompassing sequence variation, haplotype, ATAC, and differential expression across diverse tissues. Compared to the wild type, csld4 exhibited significant reductions in the plant height, flag leaf length, leaf width, spikelet length, 1000-grain weight, grain width, grain thickness, fertility, yield per plant, and bacterial blight resistance. However, there were significant increase in tiller numbers, degree of leaf rolling, flowering period, growth period, grain length, and empty kernel rate. Furthermore, the content of four polyphenol metabolites, excluding metabolite N-feruloyltyramine (mr1268), notably rose, whereas the levels of the other three polyphenol metabolites, smiglaside C (mr1498), 4-coumaric acid (mr1622), and smiglaside A (mr1925) decreased significantly in mutant csld4. The content of amino acid L-tyramine (mr1446) exhibited a notable increase, whereas the alkaloid trigonelline (mr1188) displayed a substantial decrease among the mutants. This study offered a comprehensive multi-omics perspective to analyze the genetic mechanism of OsCSLD4, and breeders can potentially enhance rice's yield, bacterial leaf blight resistance, and metabolite content, leading to more sustainable and profitable rice production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.