Abstract

The aim of this study is to prepare an eco-friendly bioadsorbent by graft copolymerization and modification from hemp fiber including bio-macromolecules such as cellulose, hemicellulose and lignin for anionic dyes adsorption from aqueous solutions, and to investigate adsorptive properties. The prepared cellulose-supported bioadsorbent (TEPA-(GMA-g-HF)) was characterized in detail using SEM-EDX, STEM, FTIR, XRD, TGA and BET techniques and calculating the point of zero charge. It was used as an adsorbent to remove three different anionic dyes, Remazol Brilliant Blue R (RBBR), Reactive Red 120 (RR120) and Reactive yellow 160 (RY160) from the aqueous medium. The effects of adsorbent amount, pH, initial dye concentration, time and temperature on the adsorption were investigated. From the results, it was determined that the adsorption of all three dyes to the developed fibrous bioadsorbent was more compatible with the pseudo-second-order kinetic and the Langmuir isotherm model. It was found that the adsorption capacity increased with increasing temperature, and the adsorption capacity at 298 K was 91.70 mg/g for RBBR, 83.33 for RY160 and 76.34 mg/g for RR120, respectively. Dye removal efficiencies were provided as approximately 100 % at acidic pHs. This high removal efficiency has also achieved in the dense matrix medium, and even after five consecutive reused.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call