Abstract

HypothesisWaterborne sulfopolyesters have gained considerable interest as coating materials due to their excellent film-forming and optical properties. Their commercial use has been limited, however, due to their fragile nature. Incorporating cellulose nanofiber (CNF), a sustainable biopolymer, into the polymer matrix is expected to enhance the mechanical integrity of the nanocomposite as these two components synergistically interact. ExperimentsIn this study, we have investigated the suspension and film characteristics of three sulfopolyesters varying in charge density, glass transition temperature and molecular weight, as well as their mixtures with CNF. We have performed steady-shear rheology on mixtures with different CNF loading levels, and resulting films have been subjected to quasistatic uniaxial tensile and water contact-angle tests to elucidate the effects of CNF on mechanical and surface properties. FindingsAddition of CNF to waterborne polyester promotes shear-thinning behavior that remains unaffected by the CNF content. Solid films cast from these suspensions possess enhanced mechanical properties, as well as tailorable surface hydrophilicity, depending on composition and film-drying temperature. Tensile tests reveal that films containing 10 wt% CNF display the greatest mechanical improvements, suggesting the existence of a previously unidentified Goldilocks composition window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.