Abstract
Tissue paper that is prepared from bamboo has a very promising future in the world, especially in China, thanks to the various merits of bamboo fibers. However, the water absorption behavior and mechanical properties of bamboo pulp based tissue paper need to be improved due to the inherent drawbacks of bamboo fiber, such as high stiffness, weak interaction between bamboo fibers etc. Hence, cellulose nanofibers (CNFs) were combined with bamboo fibers before the tissue paper-making process, to improve the water absorption behavior and mechanical properties of tissue paper. The hypotheses are that: (1) CNFs themselves possess large specific surface area and abundant hydroxyl groups as well, thus enhancing the hydrophilicity of tissue paper; and (2) the added CNFs can form 3D structures in tissue paper, thus providing abundant pores with uniform small size, which would facilitate the capillary effect for water absorption; and (3) more hydrogen bonds will be formed between CNF and bamboo fibers, thus improving the strength properties of tissue paper, thanks to the excellent mechanical and physical properties of CNF. The results from water absorption and tensile strength tests of bamboo handsheets indicated that the addition of CNFs can increase the water absorption capacity from 6.6 to 8.7 g/g when the CNF dosage was 10 wt% (based on the dried pulp). The water retention value of prepared bamboo fibers increased from 163 to 190% at the same CNF dosage, the tensile index increased from 18.5 to 24.5 N m/g as well. The results from the bulk and pore size analyses, FTIR, as well as SEM images of tissue paper also evidenced the conclusions above. Cellulose nanofiber (CNF) as a versatile filler for the preparation of bamboo pulp based tissue paper with improved water absorption behavior and mechanical properties
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.